

X

इंटरनेट

Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

"जानने का अधिकार, जीने का अधिकार" Mazdoor Kisan Shakti Sangathan "The Right to Information, The Right to Live"

"पुराने को छोड नये के तरफ" Jawaharlal Nehru "Step Out From the Old to the New"

IS 8161-6 (1983): Guide for Equipment Reliability Testing, Part VI: Tests for Validity of a Constant Failure Rate Assumption [LITD 3: Electromechanical COmponents and Mechnical Structures for Electronic Equipment]

> "ज्ञान से एक नये भारत का निर्माण″ Satyanarayan Gangaram Pitroda "Invent a New India Using Knowledge"

RIGHT TO INFORMATION "ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता Bhartrhari-Nītiśatakam "Knowledge is such a treasure which cannot be stolen"

मानक

611111111

Made Available By Public. Resource. Org

BLANK PAGE

PROTECTED BY COPYRIGHT

Indian Standard GUIDE FOR EQUIPMENT RELIABILITY TESTING

PART VI TESTS FOR VALIDITY OF A CONSTANT FAILURE RATE ASSUMPTION

UDC 621:38:038+621:31:621-192(026)

Copyright 1983

INDIAN STANDARDS INSTITUTION MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

July 1983

Indian Standard

GUIDE FOR EQUIPMENT RELIABILITY TESTING

PART VI TESTS FOR VALIDITY OF A CONSTANT FAILURE RATE ASSUMPTION

Reliability of Electronic and Electrical Components and Equipment Sectional Committee, LTDC 3

Chairman

PROF S. SAMPATH Indian Institute of Technology, Kanpur

Members

Representing

ADDITIONAL DIRECTOR. STAN-Railway Board (Ministry of Railways) DARDS (S&T), RDSÓ JOINT DIRECTOR, STANDARDS (S&T)-III, RDSO (Alternate) DR K. CHANDRA National Physical Laboratory (CSIR), New Delhi SHRI CHARANJIT SINGH Hindustan Aeronautics Ltd, Hyderabad SON LDR I. M. GANDOTRA (Alternate) CONTROLLER, CIL Ministry of Defence (DGI) LT-COL V. K. KHANNA (Alternate) Peico Electronics and Electricals Ltd. Bombay DR P. K. DUTTA SHRI V. NARAYANAN (Alternate) National Test House, Calcutta SHRI B. P. GHOSH SHRI B. C. MUKHERJEE (Alternate) SHRI A. P. GUPTA Instrumentation Ltd. Kota SHRI I. S. SULAKH (Alternate) SHRI S. P. KULKARNI The Radio Electronic & Television Manufacturers' Association, Bombay SHRI S. M. KHURSALE (Alternate) SHRI H. C. MATHUR Posts and Telegraphs Board New Delhi SHRI U. R. G. ACHARYA (Alternate) Directorate General of Civil Aviation, New Delhi SHRI D. C. MEHTA SHRI R. V. ISRANI (Alternate) SHRI S. R. MEHTA Indian Electrical Manufacturers' Association. Bombay SHRI T. C. GOSALIA (Alternate)

(Continued on page 2)

© Copyright 1983

INDIAN STANDARDS INSTITUTION

This publication is protected under the *Indian Copyright Act* (XIV of 1957) and reproduction in whole or in part by any means except with written permission of the publisher shall be deemed to be an infringement of copyright under the said Act.

(Continued from page 1)	
Members	Representing
Dr K. B. Misra	In personal capacity (Department of Electrical Engineering, Indian Institute of Technology, Kharagpur)
Shri E. G. Nagarajan	Department of Electronics, New Delhi
SHRI K. R. ANANDAKUMARAN NAIR	Lucas-TVS Ltd. Madras
SHRI C. RANGANATHAN (Alteri	nate)
SHRI D. V. PETKAR	Bhabha Atomic Research Centre, Trombay, Bombay
SHRI A. K. BABAR (Alternate)	,,,,,
SHRI V. B. PRADHAN	All India Radio, New Delhi
SHRI N. J. NAIR (Alternate)	·····, ·····, ·····,
SHRI P. S. K. PRASAD	Bharat Electronics Ltd, Bangalore
SHRI K. RAMGOPAL	ISRO Satellite Centre (ISAC), Bangalore
SHRI SIHARAN DE (Alternate)	
SHRI K. S. PRAKASA RAO	Electronics Corporation of India Ltd, Hyderabad
SHRI S. S. SONWALKAR (Alteri	nate)
Shri R. Somasundaram	Directorate of Technical Development and Prod- uction (AIR), Ministry of Defence
SHRI R. N. SHARMA (Alternate	?)
Col J. Varghese	Ministry of Defence (R & D)
SHRI P. K. SHUKLA (Alternate)
SHRI B. VIRESALINGAM	Indian Telephone Industries Ltd, Bangalore
SHRI V. MUTHAIAH (Alternate)
Shri R. C. Jain,	Director General, ISI (Ex-officio Member)
Head (Electronics) (Secretary)	

Study of Statistical Problems of Reliability of Electronic and Electrical Items Subcommittee, LTDC 3:1

Convener

DR P. K. DUTTA

Peico Electronics & Electricals Ltd, Bombay

Members

LT-COL V. K. KHANNA	Ministry of Defence (DGI)
MAJ S. P. MURGAI (Alternate	
SHRI V. NARAYANA	Indian Statistical Institute, Hyderabad
Shri P. S. K. Prasad	Bharat Electronics Ltd, Bangalore
SHRI K. RAMGOPAL	ISRO Satellite Centre (ISAC), Bangalore
Dr Y. V. Somayajulu	National Physical Laboratory (CSIR), New Delhi
SHRI V. N. SHARMA (Alternate	
COL J. VARGHESE	Ministry of Defence (R & D)
SHRI P. K. SHUKLA (Alternate)

Indian Standard

GUIDE FOR EQUIPMENT RELIABILITY TESTING

PART VI TESTS FOR VALIDITY OF A CONSTANT FAILURE RATE ASSUMPTION

$\mathbf{0.} \quad \mathbf{FOREWORD}$

0.1 This Indian Standard (Part VI) was adopted by the Indian Standards Institution on 25 January 1983, after the draft finalized by the Reliability of Electronic and Electrical Components and Equipment Sectional Committee had been approved by the Electronics and Telecommunication Division Council.

0.2 This standard gives recommended numerical methods for testing the statistical validity of the constant failure rate assumption is the sixth in the series of Indian Standards for equipment reliability testing. To be able to write a detailed reliability test specification and perform a reliability test, the test engineer will need additional information which are dealt with in detail in other standards in this series. A list of standards envisaged in this series some of which are under consideration is given on page 10.

0.3 This standard is largely based on IEC Document 56 (Secretaries) 144 Draft IEC Standard 605 Equipment reliability testing: Part 6 Test for validity of a constant failure rate assumption, issued by the International Electrotechnical Commission.

0.4 For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test, shall be rounded off in accordance with IS:2-1960*. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

1. SCOPE

1.1 This standard (Part VI) gives recommended numerical methods for testing the statistical validity of the constant failure rate assumption underlying the methods used in IS:8161 (Part IV)[†] and IS:8161 (Part VII)-1977[†].

†Guide for equipment reliability testing:

^{*}Rules for rounding off numerical values (revised).

Part IV Procedure for determining estimates and confidence limits from equipment reliability determination tests (*under preparation*).

Part VII Compliance test plans for failure rate and mean time between failures assuming constant failure rate.

1.2 Recommendations are given for action to be taken in case the assumption is rejected. If stated in the detailed reliability test specification, one of these tests shall be applied before a conclusion is made from reliability testing of failure rate or mean time between failures.

2. GENERAL

2.1 The validity test shall be performed at the end of the reliability test using all relevant failures observed in the reliability test.

2.2 It shall be recognized that the validity tests are of a statistical nature and give results associated with certain small risks to reject the assumption when it is true. The tests in this standard (Part VI) are designed to a level of significance of 10 percent, that is, 10 percent risk to reject the assumption even if it is true. The risk should be considered together with the producer's risk of a reliability compliance test if the validity test is called for by the equipment contract or specification.

2.3 The proposed tests are the most generally accepted statistical validity tests for constant failure rate against any other (but unknown) distribution. The literature contains many tests of a constant failure rate against specific alternative hypotheses, such as increasing failure rate or decreasing failure rate. These tests could be used instead of the methods given in this standard.

2.4 Two tests are given one of which is limited to a large number of failures. Each test becomes more sensitive the more failures are observed. None of the tests is powerful enough to give significant departure from constant failure rate when the number of failures is small.

2.5 In case the reliability test is terminated before 3 relevant failures have been observed, for example, at compliance testing with acceptance at 0, 1 or 2 failures, and further testing is unfeasible because of economic, time or other reasons, an assumption of a constant failure rate may be permitted without the need of the test of validity.

2.6 If the testing is extended for information beyond the decision point of a reliability compliance test, the result of a validity test using all the data should only be used for information purposes. The additional data should not affect the decision made.

3. LIST OF SYMBOLS

3.1 The following symbols are used in this standard:

- n = total number of test items;
- r = total number of failures;

- T_k = accumulated relevant test time up to the k:th failure;
- T_r = accumulated relevant test time up to the latest failure;
- T = total accumulated relevant test time;
- d = parameter related to number of failures: if the validity test is done at a point in time coinciding with a failure d=r-1; if not d=r;
- χ^2 = calculated value of the test statistic;
- $\chi_p^2(\nu)$ = theoretical value of the χ^2 distribution with ν degrees of freedom at the fractile of order p;
 - u = number of intervals in the large sample test;
 - o_i = observed number of failures in the i:th interval;
 - e_i = expected number of failures in the i:th interval; (i = 1,,u); and
 - w_i = width of the i: th interval measured in accumulated time.

4. ACCUMULATED RELEVANT TEST TIME T AND PARAMETER d

4.1 The validity test are based on the accumulated relevant test times to failures with the addition of any relevant test time accumulated between the latest failure and the point of time at which the validity test is applied. Each of these accumulated times is the sum of the relevant test times of all the individual test items as recorded by elapsed time meters, work cycle counters or other appropriate means.

4.2 The relevant test time for the individual test items is defined in the detailed reliability test specification in accordance with 10.5 of IS:8161 (Part I)-1976*.

4.3 If the validity test is to be carried out immediately after a number of failures, r, have occurred, that is, coinciding with a failure, the value of T equals Tr and the parameter d, related to the number of failures, equals r-1. If the validity test does not coincide with a failure, the parameter d equals r.

4.4 If the validity test is used in conjunction with a truncated sequential test covered in IS:8161 (Part VII)-1977*, the same accumulated relevant test times may be used in the validity test.

^{*}Guide for equipment reliability testing:

Part I Principles and procedures.

Part VII Compliance test plans for failure rate and mean time failures assuming constant failure rate.

5. PREFERRED TEST

5.1 The following test is recommended if the number of failures is between 3 and 30; if the number of failures exceeds 30 this test or the test recommended in 6 which is easier to calculate, may be used.

5.1.1 The accumulated relevant test times T_k , $k = 1, 2, \dots, r$, and T are calculated. The following test statistic shall be calculated:

$$\chi^2 = 2 \sum_{k=1}^{d} 1\eta \left[\frac{T}{T_k} \right]$$

5.1.2 In the case of a constant failure rate, χ^2 is distributed as χ^2 (2d) with 2d degrees of freedom.

5.1.3 The calculated value χ^2 of the appropriate test statistic is compared with the theoretical values of χ_p^2 (ν) given in Table 1. The two-sided test to be performed requires the values of p to be 5 percent and 95 percent for the level of significance of 10 percent. The number of degrees of freedom $\nu=2d$.

If

$$\chi^2 < \chi^2_5(\nu)$$

the assumption of a constant failure rate shall be rejected. The failure rate is likely to be increasing.

If

 $\chi^{9} > \chi_{95}^{2}(\nu)$

the assumption of a constant failure rate shall also be rejected. The failure rate is likely to be decreasing.

6. ALTERNATIVE TEST FOR A LARGE NUMBER OF FAILURES

6.1 For a large number of failures, at least 30, a χ^2 goodness-of-fit test may be used instead of the test in 5. The test is based on the accumulated relevant test times described in 4.

6.2 The period between time zero and the accumulated time T at the validity test is divided into u intervals of width w^i which need not all be equal. The expected number of failures in the i:th interval e = wi d/T shall be equal to or greater than 5 with *oi* being the observer number of failures in the i:th interval. The following test statistic shall be calculated:

$$\chi^2 = \sum_{i=1}^{\mathbf{U}} \qquad \frac{(o_i - e_i)^2}{e_i}$$

TABLE 1 X ² VALUES			
(Clauses 5.1.3 and 6.3)			
Degrees of Freedom (v)	$\chi_5^2(\boldsymbol{\nu})$	$\chi^{2}_{90}(\nu)$	$\chi^{2}_{95}(\nu)$
(1)	(2)	(3)	(4)
1	0.004	2.71	3.84
2	0.103	4.61	5.99
3	0.32	6.25	/'81
4	0.71	7.78	9.49
5	1.15	9.24	11.1
6	1.64	10.0	12.0
7	2.17	12.0	14.1
8	2.73	13.4	15.5
9	3.33	14.7	16.9
10	3.94	16.0	18.3
11	4.22	17-3	19.7
12	5.23	18.5	21.0
13	5.89	19.8	22.4
14	6.57	21.1	23.7
15	7-26	22.3	25.0
16	7.96	23.5	26.3
17	8.67	24.8	27.6
18	9.39	26.0	28.9
19	10.1	27· 2	30.1
20	10.9	28.4	31.4
21	11:6	29•6	32.7
22	12.3	30.8	33.9
23	13.1	32.0	35-2
24	13.8	33•2	36.4
25	14.6	34.4	37· 7
26	15.4	35.6	38.9
27	16.2	30.7	40.1
28	16·9	37.9	41.3
29	17.7	39.1	42.6
30	18.2	40.3	43.8
31	19.3	41.4	45.0
32	20-1	42.6	46.2
33	20.9	43.7	47.4
34	21.7	44.9	48·6
35	22.5	46.1	49.8
30	23.3	47.2	21.0

(Continued)

	TABLE 1	χ ² VALUES — Contd	
Degrees of Freedom (v)	$\chi^2_{\delta}(\nu)$	$\chi^{2}_{20}(\nu)$	$\chi^{2}_{\bullet 5}(\nu)$
(1)	(2)	(3)	(4)
37	24·1	48-4	52·2
38	24·9	49•5	53·4
39	25·7	50•7	54·6
40	26·5	51·8	55 8
41	27·3	52·9	56 9
42	28·1	54·1	58 1
43	29·0	55·2	59 ⁻ 3
44	29·8	56·4	60 [.] 5
45	30·6	57·5	61 [.] 7
46	31·4	58·6	62·8
47	32·3	59·8	64·0
48	33·1	60·9	65·2
49	33·9	62·0	66·3
50	34·8	63·2	67·5
51	35·6	64·3	68·7
52	36·4	65·4	69·8
53	37·3	66·5	71·0
54	38·1	67·7	72·2
55	39·0	68·8	73·3
56	39·8	69·9	74·5
57	40·6	71·0	75·6
58	41·5	72·2	76•8
59	42·3	73·3	77•9
60	43·2	74·4	79•1

Note — For degrees of freedom $\nu > 60$, use $\chi_p^2 = [(z + \sqrt{2\nu - 1})^2]/2$ where z is the corresponding percentage of the standard normal distribution.

6.3 The calculated value χ^2 is compared with the theoretical values of $\chi_p^2(\nu)$ given in Table 1. The one-sided test to be performed requires the value of p to be 90 percent for the level of significance of 10 percent. The number of degrees of freedom $\nu = u - 1$.

If

$$\chi^2 > \chi_{90}^2(\nu)$$

the assumption of a constant failure rate shall be rejected. In this case it is not possible to assess whether the failure rate is decreasing or increasing.

7. ACTIONS TO BE TAKEN IF THE ASSUMPTION IS REJECTED

7.1 If the assumption of a constant failure rate is rejected by either of the validity tests, it may be useful to further analyse the data in order to determine what caused the rejection and to obtain information for the judgement of appropriate action to be taken.

7.2 An immediate conclusion from the rejection of a constant failure rate assumption is that the prerequisites for the reliability compliance tests covered in IS:8161 (Part VII)-1977* are not fulfilled and that decisions based on those tests shall be questioned. The same applies for those estimates of IS:8161 (Part IV)* of this standard that are based on constant failure rate and exponential distribution of times to or between failures. Another more appropriate distribution assumption may be found and the data statistically treated accordingly.

7.3 If the validity test shows that the failure rate is likely to be decreasing, indicating the existence of an early failure period, possible action would be to improve the quality control procedures of the equipment production or to institute burn-in of all the equipments.

7.4 If the validity test indicates an increasing failure rate, for example, due to wear-out failures, a possible action is to institute preventive maintenance by scheduled replacement of wearing parts prior to failure or to make design changes in order to avoid these parts.

7.5 Changes in design, production or preventive maintenance as well as introducing burn-in are all actions that have effect on the behaviour of the equipment. After any such action, new compliance, determination and/or validity tests should be performed on the modified equipment.

*Guide for equipment reliability testing:

Part VII Compliance test plans for failure rate and mean time failures assuming constant failure rate.

Part IV Procedures for determining point estimates and confidence limits equipment reliability determination tests (*under preparation*).

INDIAN STANDARDS

\mathbf{ON}

EQUIPMENT RELIABILITY TESTING

IS:8161 Guide for	r equipment reliability testing:
(Part I)-1976	Principles and procedures
Part II	Design for test cycles (under preparation)
Part III	Preferred test conditions for equipment reliability testing (<i>under consideration</i>)
Part IV	Procedure for determining estimates and confidence limits from equipment reliability determination tests (under preparation)
(Part V)-1981	Compliance test plans for success ratio
(Part VI)-1983	Tests for validity of a constant failure rate assumption
(Part VII)-1977	Compliance test plans for failure rate and mean time between failures assuming constant failure rate
Part VIII	Tests for validity of a non-constant failure rate assumption (<i>under consideration</i>)
Part IX	Compliance test plans assuming Weiliull distribution of times to failure (<i>under consideration</i>)
Part X	Compliance test plans assuming normal distribution of times to failures (<i>under consideration</i>)
(Part XI)-1983	Flow chart describing preparations for and execution of reliability tests

PUBLICATIONS OF INDIAN STANDARDS INSTITUTION

INDIAN STANDARDS

Over 10 000 Indian Standards covering various subjects have been issued so far. Of these, the standards belonging to the Electronics and Telecommunication Group fall under the following categories:

Acoustics and acoustic measurements Capacitors and resistors Electromagnetic interference and suppression Electromechanical components Electron tubes Electronic measuring equipment Electronic measuring equipment Environmental testing procedures Magnetic components and ferrite materials

Microwave components and accessories Pietoelectric devices Printed circuits Radio communication Recording Reliability Semiconductor devices and integrated circuits Transformers and inductors Wire and cables

OTHER PUBLICATIONS

Single Copy Rs	1-00
Annual Subscription Rs 3/	5-00
Standards : Monthly Additions	
Single Copy Re f	1-30
Annual Subscription Rs 7	1-00
Annual Reports (Irom 1948-49 Onwards) Rs 2:00 to 7	1+00
151 Handbook, 1982 Rs 150)-00

INDIAN STANDARDS INSTITUTION

Manak Bhavan, 9 Bahadur Shah Zafar Marg, NEW DELHI 110002

Telephones : 26 60 21, 27 01 31

Telegrams: Manaksanstha

Telephone

Western Novelty Chambers, Grant Road BOMBAY Eastern 1 5 Chowringhee Approach CALCUTT Southern 1 C. I. T. Campus MADRAS Northern 1 B69, Phase VII S.A.S. NA	0007 89 65 28 700072 27 50 90 0113 41 24 42 AR 8 78 26

Branch Officest

Regional Officest

Pushpak', Nurmohamed Shaikh Marg, Khanpur	AHMADABAD 380001	2 03 91
"F" Block, Unity Bldg, Narasimharaja Square	BANGALORE 560002	22 48 05
Gangotri Complex, Bhadbhada Road, T. T. Nagar	BHOPAL 462003	6 27 16
22E Kalpana Area	BHUBANESHWAR 751014	5 36 27
5-8-S6C L. N. Gupta Marg	HYDERABAD 500001	22 10 83
R14 Yudhister Marg, C Scheme	LAIPUR 302005	6 98 32
117/418 B Sarvodaya Nagar	KANPUR 208005	4 72 92
Patilputra Industrial Estate	PATNA 800013	6 28 08
Hantex Bidg (2nd Floor). Rly Station Road	TRIVANDRUM 695001	12 27

Printed at Britannis Calendar Hig Co. Calcutta, India

AMENDMENT NO. 1 NOVEMBER 1987

TO

IS:8161(Part 6)-1983 GUIDE FOR EQUIPMENT RELIABILITY TESTING

PART 6 TESTS FOR VALIDITY OF A CONSTANT FAILURE RATE ASSUMPTION

(<u>First cover</u>, <u>pages</u> l <u>and</u> 3, <u>title</u>) Substitute the following for the existing title:

'Indian Standard

GUIDE FOR EQUIPMENT RELIABILITY TESTING

PART 6 TESTS FOR VALIDITY OF A CONSTANT FAILURE RATE ASSUMPTION

Section 1 Chi-square Test'

(<u>Cover page</u>, <u>and all other pages</u>, <u>designation</u>, <u>and page</u> 3, <u>clauses</u> 0.1 <u>and</u> 1.1, <u>line</u> 1) -Substitute '(Part 6/Sec 1)' for '(Part VI)'.

(LTDC 3)

Reprography Unit, BIS, New Delhi, India